Ячеистый бетон что это такое
Перейти к содержимому

Ячеистый бетон что это такое

  • автор:

Ячеистый бетон – свойства, характеристики

Ячеистый бетон – это строительный материал, пористая структура которого сформирована в результате химической реакции или механического перемешивания. В качестве исходного сырья для ячеистого бетона используют портландцемент, перемолотую известь, кремнеземистые вещества, гипс и жидкое стекло. Смесь насыщается пузырьками воздуха. Этот вид бетона имеет меньший вес, чем бетон без вспененной текстуры.

Преимущества ячеистого бетона

Ячеистый бетон отличается:

  • долгим сроком службы;
  • пожароустойчивостью;
  • легким весом,
  • теплоизоляционными характеристиками,
  • удобством использования,
  • крупными размерами.

Ячеистые бетоны довольно прочные: из них можно возводить трехэтажные здания бескаркасного типа. При сильных пожарах ячеистый бетон не теряет своей прочности и механической устойчивости. Ячеистый бетон при низкой плотности обладает небольшим весом и не дает нагрузки на фундамент. Легкий материал позволяет сэкономить значительную часть бюджета на основании. Ячеистые бетонные блоки выбирают на почвах с высоким уровнем грунтовых и приповерхностных вод, где нецелесообразно возводить глубокие фундаменты.

Блоки, изготовленные неавтоклавным способом, могут разрушаться из-за сезонного промерзания и оттаивания. Влага, которая проникает в бетонные блоки, со временем приводит к трещинам и разрушению. Для ячеистого бетона применяют цемент марок М400 и выше. Плотность зависит от вида добавок, качества цемента, расхода сырья. Ячеистый бетон имеет прочность кирпича и природного камня, обычного бетона, при этом вес и нагрузка на фундамент для этого строительного материала в несколько раз ниже.

Ячеистый бетон

Блоки из ячеистого бетона

Блоки из ячеистого бетона разделяют на:

  • газобетонные,
  • и пенобетонные.

Для формирования пенобетонных блоков используют пенообразователи. Сырье загружают в машину для смешивания, добавляют пенообразователи, разливают по формам. Процесс поризации пеной происходит только в беспесчаных смесях. Пенобетонные блоки можно использовать сразу после застывания. Газобетонные блоки получают в результате химического процесса. Газобетонные блоки затвердевают в автоклаве, приобретая нужные геометрические пропорции.

Блоки из ячеистого бетона классифицируют по плотности. Прочность газобетонных блоков выше, чем у пенобетонных разновидностей. При усадке пенобетон чаще растрескивается, но он почти не впитывает влагу и не требует антикоррозийной обработки. Блоки из ячеистого бетона имеют большие размеры, поэтому скорость работ значительно возрастает. Пено- и газобетонные блоки легко обрабатываются и режутся.

Ячеистый бетон

Основное применение ячеистого бетона

Для ячеистых бетонов выделяют три сферы назначения:

  • для утепления стен, перекрытий, трубопроводов (используют неплотные разновидности),
  • для возведения зданий и сооружений,
  • универсальный конструкционно-теплоизоляционный.

Ячеистый бетон используют для строительства несущих, внутренних и наружных стен. Для устройства внутренних перегородок материал заменяет дорогостоящие панели, создавая повышенную звукоизоляцию. Пено- и газобетонные блоки подходят для возведения промышленных предприятий, хозяйственных малоэтажных объектов, жилых помещений разной этажности. Ячеистый бетон не способен противостоять увеличенным деформационным нагрузкам, поэтому при неправильном выборе типа фундамента и недостаточном изучении грунтов на участке строительства стены из ячеистого бетона могут треснуть.

Что такое ячеистый бетон

Что такое ячеистый бетон

Ячеистый бетон — это искусственный строительный материал, относящийся к классу особо легких составов. По внешнему виду и структуре можно определить, чем он отличается от обычного: ячеистый бетон имеет равномерно расположенные округлые поры. Эти ячейки заполнены воздухом или газом, например гелием. Они могут занимать до 85-92% объёма материала.

Виды ячеистых бетонов

Классы и марки ячеистого бетона различаются по сферам применения, плотности, составу и другим параметрам. Разновидности легкого ячеистого бетона классифицируются по способу твердения:

  • автоклавного твердения — обрабатывается при высоких температурах в специальном оборудовании — автоклаве;
  • неавтоклавного твердения — обрабатывается в естественной среде.

Выбирая ячеистый бетон в качестве строительного материала, следует учитывать его плюсы и минусы. К преимуществам относятся:

  • способность хорошо сохранять тепло;
  • звукоизоляция;
  • экологичность и безопасность для здоровья;
  • сейсмостойкость;
  • огнестойкость;
  • вентилируемость благодаря паропроницанию;
  • долговечность.
  • скапливающаяся в порах влага может привести к разрушению внутренней структуры при замерзании, поэтому необходимо предусмотреть правильную отделку;
  • высокая хрупкость изделий: требуется проявлять осторожность при транспортировке;
  • возможность появления трещин из-за усадки у газобетона — 0,5 мм/м, у пенобетона — 3,5 мм/м, поэтому рекомендуется накладывать штукатурку на стены, например «Церезит».

Характеристики ячеистого бетона

Основные свойства материала обусловлены технологией изготовления, характером пористости, удельным весом. Размеры ячеек и толщина межпоровых перегородок зависят от процентного соотношения компонентов. Чем больше поры, тем выше теплопроводность и ниже плотность.

Самую низкую плотность имеет теплоизоляционный ячеистый бетон с крупными порами — 300-500 кг/м3. У конструкционно-теплоизоляционного бетона плотность 500-900 кг/м3, у конструкционного — самые маленькие поры и плотность 1000-1200 кг/м3. По мере увеличения плотности у разных типов бетона меняется их сорбционная влажность:

  • 8-18% у теплоизоляционного;
  • 8-22% у конструкционно-теплоизоляционного;
  • 10-22% у конструкционного.

Ячеистый бетон любого типа обладает достаточной морозостойкостью. Стены из такого материала можно возводить в местности с любым климатом. Для повышения морозостойкости необходимо применять модифицирующие добавки и гидрофобные покрытия.

Срок службы ячеистого бетона от 50 лет. Это достигается благодаря составу материала: в нём есть минеральные компоненты, он не гниёт, не интересует животных-вредителей.

Технология производства

Технические условия и требования производства строго регулируются ГОСТами 25485 89 и 31360 2007. По способу изготовления материал бывает нескольких типов:

  • пенобетон — изготавливается с помощью пенообразователя, добавляемого в раствор из цемента, воды и песка, имеет закрытые поры;
  • газобетон — производится благодаря химической реакции извести и алюминия, имеет открытые поры;
  • пеногазобетон — получается с помощью вспучивания раствора в вакууме при газовыделеинии и воздухововлечения при пенообразовании.

Технология производства включает несколько этапов:

  1. В бетоносмеситель подаются песок, вода, цемент, необходимые добавки и газообразователь — алюминиевая пудра.
  2. Смесь подогревается для эффективности реакции газообразующего модификатора, перемешивается.
  3. С помощью литья или вибропрессования смесь получает необходимую форму.
  4. Излишки композита удаляются, изделие нарезается до необходимого размера.
  5. Происходит обработка в автоклаве.

Если изготавливается неавтоклавный бетон, подготовленный раствор из компонентов отправляют на формование. Затем изделие достигает технической зрелости примерно за 28 дней. Его необходимо увлажнять каждые 8 часов в первую неделю и каждые 12 часов в последующие недели. Для ускорения затвердевания изделия пропариваются под давлением.

Качество на выходе проверяется по ГОСТу. Проводится ряд испытаний для контроля соответствия установленным показателям. Измеряются плотность, паропроницаемость, усадка, морозостойкость, прочность на сжатие, теплопроводность, модуль упругости, отпускная и сорбционная влажность.

Области применения ячеистого бетона

Ячеистый бетон для строительства домов, реконструкции и ремонта помещений применяется с учетом его плотности и теплопроводности. Конструкции из ячеистых бетонов легче, чем из обычных, их можно возводить своими руками.

Теплоизоляционный бетон не подходит для установки стеновых блоков, поскольку не способен выдерживать большой вес. Поэтому лёгкий ячеистый бетон используют для утепления покрытий благодаря его хорошей теплопроводности.

Для возведения стеновых панелей применяют конструкционно-теплоизоляционный бетон средней плотности. Конструкционный ячеистый бетон с высокой плотностью и способностью к нагрузкам предназначен для несущих стен зданий высотой до 3-5 этажей. Для строительства фундамента ячеистый бетон не применяется.

Из ячеистого бетона изготавливают также:

  • армированные и неармированные блоки;
  • межкомнатные перегородки;
  • плиты перекрытия и покрытия;
  • теплоизоляционную засыпку;
  • пустотелый кирпич;
  • декоративные изделия.

Монолитный бетон, затвердевающий на строительной площадке, применяют для ограждений, полов с утеплением, теплоизоляции крыши. Жаростойкий материал используют для строительства тепловых агрегатов.

Недорогие и качественные бетонные блоки производят отечественные компании «Геркулес» и «Аерок». Благодаря современному оборудованию удается достигать максимально точных геометрических размеров каждого изделия. Стеновые блоки возможно устанавливать с помощью анкеров и клеевых смесей. Клей дешевле цементно-песчаных растворов и позволяет избежать мостиков холода в стене.

Ячеистый бетон

Камень, который обладает свойствами древесины — вот что такое ячеистый бетон. Естественно, этот материал вобрал в себя лучшие свойства от обоих своих предшественников. Например, с деревом его объединяют такие качества, как легкость обработки, высокий уровень звукоизоляции и способность сохранять тепло. Все это — при экологической безопасности и доступности. Экономия достигается за счет получения формы с пустотами — их заполняет воздух, также влияющий на соответствующие характеристики выстроенной из этого материала поверхности.

Создавать разные постройки из ячеистого бетона значительно легче, чем из традиционных материалов. Например, он намного легче бетона. То есть, не требует такого основательного фундамента для себя. Также снижаются требования к грунту при строительстве. Естественно, транспортировать и использовать его гораздо легче. Не говоря уже о простоте обработки. А она является очень привлекательным фактором. Подробнее о технологических особенностях, привлекательности и экономической выгоде его использования читайте в приведенной здесь статье.

Технологические особенности производства

Ячеистый бетон получают несколькими способами, дающими композиты, незначительно отличающиеся по основным характеристикам. Основными видами, отличающимися по способу аэрации смеси, являются газобетонные и пенобетонные изделия.

Для производства газобетона применяют специальный газообразователь — чаще всего эту функцию выполняет алюминиевая пудра, которая, смешиваясь со структурной смесью извести, вступает в реакцию с выделением водорода. Образующийся газ вспенивает субстанцию, увеличивая ее в объеме почти в 5 раз, образуя губчатую структуру.

После окончания реакции коллоидную смесь помещают в автоклав. Он представляет собой толстостенную герметичную емкость, в которой создается разряжение 0,8–1,2 мПа и температура 175–200°С. Затвердевший массив после автоклава распиливают на блоки.

Суть процесса заключается в следующем: в подготовленную структурную смесь (песок, цемент, известь, вода) в определенной пропорции добавляют реагент, представляющий собой вспененную субстанцию. Полученную разнодисперсную смесь хорошо вымешивают, в результате чего происходит ее насыщение воздухом (вспененный реагент) и увеличение в объеме.

После этого композит застывает с образованием пористой структуры. На рынке присутствуют фирмы предлагающие оборудование и реагенты для изготовления пенобетона по доступным ценам. Это дает возможность организовать производство практически в домашних условиях.

Кому отдать предпочтение?

Ячеистый бетон, полученный каждым из этих способов, имеет свои визуальные отличия. Так, блоки, полученные газофракционным способом, заметно светлее с идеально ровными и четкими гранями, а если поместить их в резервуар с водой, то немного потонут. Блоки, полученные с помощью аэрационного реагента, имеют серый цементный цвет и совершенно не тонут в воде.

Основные эксплуатационные отличия заключаются в следующем:

  • газобетонные блоки более прочные, поэтому их лучше применять для возведения несущих конструкций;
  • значения величины теплопроводности и морозостойкости практически не отличаются;
  • у газобетона в 1,5 раза выше водопоглощающая способность, чем у оппонента;
  • производство пенобетона приблизительно на 25% дешевле, чем газобетона, так как алюминиевая пыль и специальное оборудование (автоклав) удорожают его производство.

Идеальным вариантом будет, если ячеистые бетоны использовать вместе. Для возведения коробки здания, включая подвальное помещение, стоит взять газобетон, а из пенобетона — возвести внутридомовые перегородки и теплобарьер. Такой симбиоз даст конструкции необходимую прочность и максимальный эффект энергосбережения.

Таблица – Технические характеристики

Таблица – Технические характеристики

Параметр Газобетон (автоклавный) Пенобетон Кирпич
Масса 1 м 3 400-1200 кг 400-1200 кг 1200—2000 кг
Предел прочности на сжатие 10-160 кг 7-90 кг 75-300 кг
Водопоглощение, % по массе 20% 14% 8-12%
Морозостойкость до 100 циклов
Теплопроводность в сухом состоянии, Вт/м*°С 0,09-0,20 Вт/м*°С 0,09-0,38 Вт/м*°С 0,44 — 0,87 Вт/м*°С

ТЭП синтетического стройматериала

Из приведенной выше таблицы видно, что ячеистый бетон как основа капитального строительства уступает по некоторым параметрам кирпичной кладке. Но даже эти отличия не могут служить достаточным аргументом в пользу традиционного материала: так как пористый бетон объединил в себе передовые качества разных материалов, то и оценка его эффективности должна производиться комплексно.

Экономическая составляющая

Независимо от плотности ячеистого бетона он намного легче кирпича, что уменьшает нагрузку на фундамент, а это дает существенную экономию на устройстве основания и строительно-монтажных работах. Существенная экономия достигается за счет использования при монтаже специального клеящего раствора.

Его расход значительно меньше цементного за счет требуемой толщины (2–3 мм против 5–10 мм), а также плотности сцепления блоков, не требующих дополнительного подмазывания швов. При работе с пористым бетоном увеличивается производительность труда, легкость и простота сборки: последняя такова, что двое рабочих могут возводить порядка 100 м2 стеновой поверхности.

Теплоизоляционные свойства

Способность сохранять тепло у ячеистого бетона сравнима с показателями деревянных конструкций, но при этом толщина стен не ограничена в размерах и вполне может быть такой же, как у кирпичных сооружений. Теплоизоляционная способность стены из пористого бетона, при прочих равных условиях, в 3 раза превосходит кладку из глиняного кирпича и в 8 раз − из панельного бетона.

Монтаж конструкции происходит таким образом, что исключается возникновение «мостиков холода» в швах между блоками. Цементный раствор обладает большой теплопроводностью, что с учетом толщины делает кладку малоэффективной. Он укладывается гораздо плотнее, а если использовать плиты, то количество потенциальных брешей (швов) сводится к минимуму.

Синтетический материал не требует дополнительного утепления и способен снизить расходы на отопление помещения до 30%. Стены из пористого бетона отличаются большой тепловой инерционностью. Поэтому температура в комнате от раскаленной снаружи солнечными лучами стены достигнет максимума приблизительно через 8 часов, но все равно будет ниже, чем при кирпичной кладке.

Ячеистые бетоны обладают удивительной способностью аккумулировать тепловую энергию и отдавать ее при изменении тепловой нагрузки в комнате. Летом они задерживают тепло с улицы, поддерживая прохладу в комнате, а зимой, сохраняя тепло отопительных приборов, отдают его при уменьшении подогрева.

Пароводяной баланс

Паропроницаемость – это показатель, характеризующий способность пропускать увлажненный воздух либо пар. Блоки ячеистого бетона имеют высокое значение паропроницаемости, что способствует поддержанию благоприятного микроклимата и уменьшению влажности в доме. Это не дает возможности развиваться грибкам и плесени.

Величина влагопоглощения говорит о том, какое количество воды может впитать материал. При намокании теплоизоляционный материал теряет свои свойства, а также может разрушаться физически. Пористый бетон обладает достаточно высоким процентом влагопоглощения. Но это некритично, если при монтаже произвести гидроизоляцию фундамента и низа стен, а также мест, потенциально способных накапливать влагу.

Пожаробезопасность и звукоизоляция

Ячеистый бетон относится к пожаробезопасным материалам класса А1, которые разрешено применять при строительстве объектов даже I и II категории опасности. Это отличный огнеупорный материал, способный в течение 70 минут выдерживать прямое воздействие открытого огня, не теряя своих свойств. Исследования показали, что при разогреве до 400С жесткость пористого бетона усиливается на 80%.

Звукоизоляция в домах из ячеистого бетона отвечает все нормам и требованиям без организации каких-либо дополнительных мероприятий. Характерным является тот факт, что значение этого показателя выше у изделий с меньшей плотностью, так удельный объем воздушной прослойки у них больше.

Несмотря на то, что материал является синтетическим, он соответствует всем стандартам экологической безопасности, включая радиационную составляющую. Поэтому можно с уверенностью сказать, что строительные материалы из пористого бетона имеют все шансы стать монополистами на рынке капитального строительства.

О ячеистых бетонах

Ячеистый бетон является разновидностью легкого бетона, его получают в результате затвердевания вспученной при помощи порообразователя смеси вяжущего, кремнеземистого компонента и воды. При вспучивании исходной смеси образуется характерная «ячеистая» структура бетона с равномерно распределенными по объему воздушными порами. Благодаря этому ячеистый бетон имеет небольшую объемную массу, малую теплопроводность и достаточную прочность. Эти свойства, доступность сырья и простота технологии делают ячеистый бетон прогрессивным материалом для эффективных конструкций стен, покрытий зданий из легкого железобетона.

Пористость ячеистого бетона сравнительно легко регулировать в процессе изготовления и получать бетоны разной объемной массы и назначения.

По назначению ячеистые бетоны подразделяют на три группы:

  • теплоизоляционные объемной массой в высушенном состоянии не более 500 кг/м3;
  • конструктивно-теплоизоляционные (для ограждающих конструкций) объемной массой от 500 до 900 кг/м3;
  • конструктивные (для железобетона) объемной массой от 900 до 1200 кг/м3.

Вяжущим для цементных ячеистых бетонов обычно служит портландцемент.

Бесцементные ячеистые бетоны (газо- и пеносиликат) автоклавного твердения изготавливают, применяя молотую негашеную известь 1-го и 2-го сортов с временем гашения от 8 до 25 мин. Вяжущее применяют совместно с минеральной добавкой, содержащей двуокись кремния.

Кремнеземистый компонент (молотый кварцевый песок, зола-унос ТЭЦ и молотый гранулированный доменный шлак) уменьшает расход вяжущего и повышает качество ячеистого бетона.Кварцевый песок размалывают обычно мокрым способом и применяют в виде песчаного шлама. Измельчение увеличивает удельную поверхность кремнеземистой добавки и повышает ее химическую активность. Встречается тонкодисперсный природный кварц-маршалит частицами от 0,01 до 0,06 мм.Зола-унос имеет высокую дисперсность, поэтому ее не нужно молоть. К химическому составу золы предъявляют определенные требования, вызванные стремлением иметь в золе побольше активной составляющей — двуокиси кремния и поменьше веществ, вызывающих химическую коррозию или неравномерность изменения объема. Поэтому зола-унос должна содержать (в % по массе): SiO2 — не менее 40, Аl2O3- не более 30, Fe2O3 — не более 15, MgO — не более 3, сернистых и сернокислых соединений (в пересчете на SО3) — не более 3. В золе допускается присутствие до 5% частиц несгоревшего угля.Молотый доменный гранулированный шлак служит в качестве добавки к портландцементу при изготовлении цементного ячеистого бетона. Его можно использовать для изготовления бесцементного ячеистого бетона с активизаторами твердения — воздушной известью и гипсом.Применение отходов промышленности (золы-унос и доменных шлаков) для изготовления ячеистого бетона все время увеличивается, так как это экономически выгодно.

Эффективно также использовать нефелиновый цемент, получающийся в виде сопутствующего продукта ряда производств.

Соотношение между кремнеземистым компонентом и вяжущим устанавливают опытным путем. Кремнеземистую добавку и портландцемент обычно берут поровну (соотношение 1:1).При перемешивании материалов в смесителе получается исходная смесь — тесто, состоящее из вяжущего, кремнеземистого компонента и воды. Вспучивание теста вяжущего может осуществляться двумя способами: химическим, когда в тесто вяжущего вводят газообразующую добавку и в смеси происходят химические реакции, сопровождающиеся выделением газа; механическим, заключающимся в том, что тесто вяжущего смешивают с отдельно приготовленной устойчивой пеной.

В зависимости от способа изготовления ячеистые бетоны подразделяют на газобетон и пенобетон. У нас и за рубежом развивается производство преимущественно газобетона. Его технология более проста и позволяет получить материал пониженной объемной массы со стабильными свойствами. Пена же не отличается стабильностью, что вызывает колебания объемной массы и прочности бетона — пенобетона.

Газобетон и газосиликат. Газобетон приготовляют из смеси портландцемента (часто с добавкой воздушной извести или едкого натра), кремнеземистого компонента и газообразователя.По типу химических реакций газообразователи делят на следующие виды:

  • вступающие в химическое взаимодействие с вяжущим или продуктами его гидратации (алюминиевая пудра);
  • разлагающиеся с выделением газа (пергидроль Н202);
  • взаимодействующие между собой и выделяющие газ в результате обменных реакций (например, молотый известняк и соляная кислота).

Чаще всего газообразователем служит алюминиевая пудра. Она, реагируя с гидратом окиси кальция, выделяет водород по реакции: ЗСа (ОН)2 + 2Аl + 6Н20 = ЗН2^ + ЗСаО • Аl2О3 • 6Н2О. Согласно уравнению химической реакции 1 кг алюминиевой пудры выделит в нормальных условиях 1,245 м3 водорода. При повышении температуры объем газа возрастет и, например, при 40°С составит 1,425 м3. На практике расходуется большее количество алюминиевой пудры, так как она содержит менее 100% активного алюминия и, кроме того, часть газа теряется в процессе перемешивания и вспучивания раствора.Это учитывается с помощью коэффициента газоудержания Кг.у, представляющего отношение объема газа, удержанного раствором, Vу к теоретическому объему выделяемого газа Vт при данной температуре Кг.у= Vу / Vт.Коэффициент газоудержания обычно составляет 0,7-0,85; на изготовление 1 м3 ячеистого бетона объемной массой 600-700 кг/м3 расходуется 0,4-0,5 кг алюминиевой пудры.Гидроокись кальция образуется в процессе взаимодействия портландцемента с водой при гидролизе трехкальциевого силиката. Для усиления газовыделения в смесь добавляют воздушную известь или едкий натр.

Алюминиевую пудру применяют в виде водной суспензии. При изготовлении на заводе алюминиевый порошок парафинируют, поэтому его частицы плохо смачиваются водой. Для придания пудре гидрофильных свойств ее обрабатывают водным раствором поверхностно-активных веществ (ССБ, канифольного мыла и др.).Прокаливание же алюминиевого порошка с целью удаления пленок парафина с частиц может вызвать взрыв.

Ячеистый бетон изготовляют по обычной (литьевой) технологии и другими методами.

Литьевая технология предусматривает отливку, изделий, как правило, в отдельных формах из текучих смесей, содержащих до 50-60% воды от массы сухих компонентов (водотвердое отношение В/Т=0,5-0,6). При изготовлении газобетона применяемые материалы — вяжущее, песчаный шлам и вода дозируют и подают в самоходный растворосмеситель, в котором их перемешивают 4-5 мин; затем в приготовленную смесь вливают водную суспензию алюминиевой пудры и после последующего перемешивания теста с алюминиевой пудрой газобетонную смесь заливают в металлические формы на определенную высоту с таким расчетом, чтобы после вспучивания формы были доверху заполнены ячеистой массой.Избыток массы («горбушку») после схватывания смеси (через 3-6 ч) срезают специальными струнами. Для ускорения газообразования, а также процессов схватывания и твердения применяют «горячие» смеси на подогретой воде с температурой в момент заливки в формы около 40°С.Тепловую обработку ячеистого бетона производят преимущественно в автоклавах в среде насыщенного водяного пара при температуре 175-200°С и давлении 0,8-1,3 МПа. Автоклавы представляют собой герметически закрывающиеся цилиндры диаметром до 3,6 м и длиной до 32 м. Во влажной среде и при повышенной температуре кремнеземистый компонент проявляет химическую активность и вступает в соединение с гидроокисью кальция с образованием гидросиликатов кальция, придающих ячеистому бетону повышенную прочность и морозостойкость.

Автоклавную обработку производят по определенному режиму с учетом типа и массивности изделий. Чтобы не появились трещины в изделиях, предусматривают плавный подъем и спуск температуры и давления (в течение 2-6 ч); время выдержки изделий при максимальной температуре составляет 5-8 ч.Неавтоклавные ячеистые бетоны, изготовленные по литьевой технологии и твердевшие в нормальных условиях или пропаренные при атмосферном давлении (при температуре 80-100°С), значительно уступают автоклавным бетонам по прочности и морозостойкости.Литьевая технология ячеистого бетона, основанная на применении текучих смесей с большим количеством воды, имеет ряд недостатков. Готовые изделия имеют большую влажность 25-30%, поэтому у них большая усадка, вызывающая появление трещин. Изделия получаются неоднородными по толщине (по высоте формы) вследствие расслоения жидкой смеси, всплывания газовых пузырьков. Производственный цикл удлиняется из-за медленного газовыделения и схватывания смеси.

Новые технологические методы позволяют смягчить или полностью устранить эти недостатки.

Вибрационная технология газобетона заключается в том, что во время перемешивания в смесителе и вспучивания в форме смесь подвергают вибрации.Тиксотропное разжижение, происходящее вследствие ослабления связей между частицами, позволяет уменьшить количество воды затворения на 25-30% без ухудшения удобоформуемости смеси. В смеси, подвергающейся вибрированию, ускоряется газовыделение- вспучивание заканчивается в течение 5-7 мин вместо 15-50 мин при литьевой технологии. После прекращения вибрирования газобетонная смесь быстро, через 0,5-1,5 ч, приобретает структурную прочность, позволяющую разрезать изделие на блоки, время автоклавной обработки также сокращается. Все это повышает производительность предприятий и снижает себестоимость изделий из ячеистого бетона.Разработаны новые технологические приемы изготовления ячеистого бетона из холодных смесей (с температурой около 20°С) с добавками поверхностно-активных веществ и малым количеством воды. Такой газобетон на цементе после обычного пропаривания при атмосферном давлении достигает прочности автоклавного бетона, изготовленного по литьевой технологии. Замена автоклавной обработки пропариванием без ущерба для качества ячеистого бетона дает большой экономический эффект, так как отказ от дорогостоящего и сложного автоклавного хозяйства удешевляет и упрощает изготовление изделий.Принципы вибрационной технологии разработаны советскими учеными.

Резательная технология изготовления изделий из ячеистого бетона предусматривает формование вначале большого массива (объемом 10-12 м3, высотой до 2 м). После того как бетон наберет структурную прочность, массив разрезают в горизонтальном и вертикальном направлениях на прямоугольные элементы, а затем подвергают тепловой обработке. Полученные элементы калибруют на специальной фрезерной машине и отделывают их фасадные поверхности.Из готовых элементов, имеющих точные размеры, собирают на клею плоские или объемные конструкции, используя стяжную арматуру. Таким путем получают большие стеновые панели размером на одну или две комнаты и высотой на этаж.Резательная технология дает возможность изготовлять с большой точностью легкие сборные конструкции полной заводской готовности, что повышает качество монтажных работ и темпы индустриального строительства.

Газосиликат автоклавного твердения в отличие от газобетона не требует цемента, так как изготовляется на основе известково-кремнеземистого вяжущего. Поэтому изделия из газосиликата получают, используя в основном местные дешевые материалы — воздушную известь и песок, золу-унос и металлургические шлаки. Соотношение между известью и молотым песком колеблется от 1 :3 до 1 :4,5 (по массе), при этом извести расходуется от 120 до 180 кг на 1 м3 газосиликата. Изделия из газосиликата приобретают нужную прочность и морозостойкость только после автоклавной обработки, обеспечивающей химическое взаимодействие между известью и кремнеземистым компонентом и образование нерастворимых в воде гидросиликатов кальция.

Пенобетон и пеносиликат. Пенобетон приготовляют, смешивая между собой приготовленную растворную смесь и пену, образующую в тесте воздушные ячейки.

Раствор получают из вяжущего (цемента или воздушной извести) кремнеземистого компонента и воды, как и в технологии газобетона.

Пену приготовляют в лопастных пеновзбивателях и центробежных насосах из водного раствора пенообразователей, содержащих поверхностно-активные вещества, либо при помощи пеногенераторов. Применяют гидролизованную кровь (ГК), клееканифольный, смолосапониновый, алюмосульфо-нафтеновый и синтетические пенообразователи. Пенообразование вызывается понижением поверхностного натяжения воды на поверхности раздела «вода-воздух» под влиянием поверхностно-активных веществ, адсорбирующихся на поверхности раздела.

Качество пены тем выше, чем больше «кратность», представляющая отношение начального объема пены к объему водного раствора пенообразователя. Пена должна быть прочной и устойчивой, т. е. не осаживаться и не расслаиваться по крайней мере в начальный период схватывания ячеистой массы. Стабилизаторами пены служат добавки раствора животного клея, жидкого стекла или сернокислого железа; минерализаторами же являются цемент и известь.

Пенобетонную смесь на цементе или извести можно изготовлять в смесителях периодического действия. В пеногенераторе приготовляется пена, в растворосмесителе готовится цементно-песчаный или известково-песчаный раствор и приготовленная пена смешивается с растворной смесью. Полученную ячеистую массу заливают в формы. Перед термообработкой отформованные пенобетонные изделия выдерживают до приобретения необходимой структурной прочности, тогда изделия не растрескиваются при перемещении форм и для них не опасно расширение воздуха, находящегося в ячейках-порах, происходящее при тепловой обработке. Для сокращения времени выдержки и ускорения оборачиваемости форм добавляют хлористый кальций, поташ и другие вещества, ускоряющие структурообразование.

Прочность и объемная масса являются главными показателями качества ячеистого бетона.

Объемная масса косвенно характеризует пористость ячеистого бетона: увеличивая пористость с 60 до 83%, можно снизить объемную массу с 1000 до 400 кг/м3. Поэтому зависимость свойств бетона от объемной массы, представленная на графике, выражает, в сущности, влияние пористости. Возрастание объемной массы ячеистого бетона с 300 до 1200 кг/м3 сопровождается, как видно из графика, закономерным увеличением его прочности и теплопроводности.Кривые, характеризующие изменение свойств ячеистого бетона от объемной массы приведены на рисунке ( 1 — марка по прочности, 2- контрольная, прочностная характеристика, 3 — водопоглощение по объему, 4 — коэффициент теплопроводности):

Прочность и объемная масса ячеистого бетона

Проектная марка ячеистого бетона по прочности R обозначает предел прочности при сжатии кубов с ребром 200 мм, имеющих естественную влажность 8% (по массе). Если кремнеземистым компонентом является не молотый кварцевый песок, а зола, влажность ячеистого бетона принимается равной 15%. Установлены следующие марки конструктивно-теплоизоляционных и конструктивных ячеистых бетонов по прочности на сжатие: 25, 35, 50, 75, 100, 150, 200.

Предел прочности при сжатии (контрольная характеристика) ячеистого бетона определяют как среднее арифметическое результатов испытания шести высушенных до постоянной массы образцов-кубов с ребром 100 мм или цилиндров диаметром и высотой 100 мм.

Для перехода от контрольной характеристики RC к марке бетона пользуются переходным коэффициентом 0,7, т. е. R = 0,7RC. У Водопоглощение и морозостойкость зависят от величины и характера макропористости ячеистого бетона и от плотности перегородок между макропорами (ячейками). Для снижения водопогло-щения и повышения морозостойкости стремятся к созданию ячеистой структуры с замкнутыми порами. Этому способствует вибрационная технология, так как при вибрации газобетонной смеси разрушаются крупные ячейки, снижающие морозостойкость и однородность материала.

Водотвердое отношение В/Т (т. е. отношение массы воды к массе вяжущего и кремнеземистого компонента) при вибрационной технологии значительно меньше, чем при литьевой, поэтому уменьшается и капиллярная пористость перегородок между порами, они становятся плотнее. Улучшению структуры благоприятствует введение при изготовлении ячеистого бетона гидрофобизующих и комплексных гидрофобно-пластифицирующих добавок. Таким путем можно получить ячеистый бетон высокой морозостойкости, пригодный для строительства в суровом климате.

Установлены следующие марки ячеистого бетона по морозостойкости (в циклах замораживания и оттаивания): 10, 15, 25, 35, 50, 100 и 200.

Для панелей наружных стен применяется ячеистый бетон марок Мрз10, Мрз15, Мрз25 в зависимости от влажности атмосферы в помещениях и климатических условий. Более высокая морозостойкость требуется от конструктивного ячеистого бетона для железобетонных конструкций, подвергающихся многократному замораживанию и оттаиванию.

Теплопроводность ячеистого бетона сильно зависит от влажности. Расчетную величину коэффициента теплопроводности лр можно определить, имея данные о коэффициенте теплопроводности сухого материала лсух и влажности (W в % по объему)

лр = лсух / (1+бW/100)

где б — прирост коэффициента теплопроводности на 1% влажности (в среднем б = 0,01).

Удельная теплоемкость ячеистого бетона составляет в среднем 0,84 кДж/кг-град.

Коэффициент его теплоусвоения при периоде 24 ч колеблется взависимости от объемной массы от 1,5 до 5,8 кДж/м2*К Для тяжелого бетона он составляет около 14,5 кДж/(м*К).

Коэффициент линейного температурного расширения ячеистого бетона в среднем равен 8*10-6*1/К.

Усадка зависит от объемной массы и состава ячеистого бетона (величины водотвердого отношения, расхода вяжущего), а также от условий твердения. Ячеистый бетон объемной массой 700- 800 кг/м3 в воздухе с 70-80% -ной относительной влажностью и температурой 20°С имеет усадку 0,4-0,6 мм/м.

Снижение усадки необходимо для предотвращения усадочных технологических трещин и для повышения трещиностойкости ячеистобетонных конструкций при эксплуатации здания. Этому способствует уменьшение начального количества воды затворення и введение пористого крупного заполнителя.

Ячеистые бетоны успешно применяют для легких железобетонных конструкций и теплоизоляции. У нас в стране широко распространены конструктивно-теплоизоляционные и теплоизоляционные ячеистые бетоны. Из них изготовляют панели наружных стен и покрытий зданий, неармированные стеновые и теплоизоляционные блоки, камни для стен. Конструкции из ячеистых бетонов долговечны в зданиях с сухим и нормальным режимами помещений при относительной влажности воздуха 60-70%. Коррозия стальной арматуры в ячеистом бетоне может начаться еще при автоклавной обработке изделий и усиливаться при эксплуатации.

Для защиты от коррозии арматуру покрывают цементно-битумными или цементно-полистирольными обмазками толщиной 0,3-0,5 мм.

Ячеистые бетоны обладают сравнительно большой сорбционной влажностью, паро- и воздухопроницаемостью, которая в 5-10 раз больше, чем у тяжелого бетона. Поэтому наружную поверхность ограждающих конструкций защищают более плотными слоями раствора, дроблеными каменными материалами, керамической плиткой, гидрофобными покрытиями на основе кремнийорганических пленкообразующих веществ и др. Защитные слои и покрытия должны предохранять ячеистый бетон от увлажнения атмосферной влагой, иметь с ним прочное сцепление, обладать морозостойкостью не менее 35 циклов и достаточной паропроницаемостью. Для панелей наружных стен жилых и общественных зданий толщина отделочного слоя раствора или бетона должна быть не более 2см, а марка по прочности на сжатие не менее 100 и не более 200% от проектной марки ячеистого бетона.

В промышленном строительстве широко применяют ленточные стеновые панели размерами 1,2x6x0,2 и 1,8x6x0,24 м и плиты покрытий ГПК. Наружные стены жилых зданий монтируются из крупных панелей на одну или две комнаты. Совмещенные покрытия жилых зданий выполняются из плит с вентилируемыми каналами.

Предварительно напряженные двухслойные плиты используют для покрытий и чердачных перекрытий всех видов зданий.

Конструкции из ячеистых бетонов отличаются высокими технико-экономическими показателями.

Стены из ячеистого бетона в 1,3-2 раза легче стен из железобетонных слоистых и керамзитобетонных панелей, стоимость их также меньше. Удельные капиталовложения в строительство заводов ячеистого бетона на 30-40% меньше, чем в строительство предприятий, выпускающих аналогичные конструкции из тяжелого и легкого бетона с пористым заполнителем. Поэтому применение ячеистого бетона постоянно расширяется. Эффективность ячеистого бетона возрастает при снижении объемной массы и выпуске изделий полной заводской готовности. Заводы переходят на массовое производство ячеистого бетона объемной массой 500-600 кг/м3 (вместо 700-800 кг/м3) с контрольной прочностью 25-35.

Вы также можете посмотреть следующие разделы

  1. Основные преимущества ячеистых бетонов
  2. Газобетон, как разновидность ячеистого бетона
  3. Газосиликат, как разновидность ячеистого бетона
  4. Выбор заполнителя для ячеистых бетонов
  5. Вода и порообразователи для ячеистых бетонов
  6. Сравнение газобетона с пенобетоном

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *